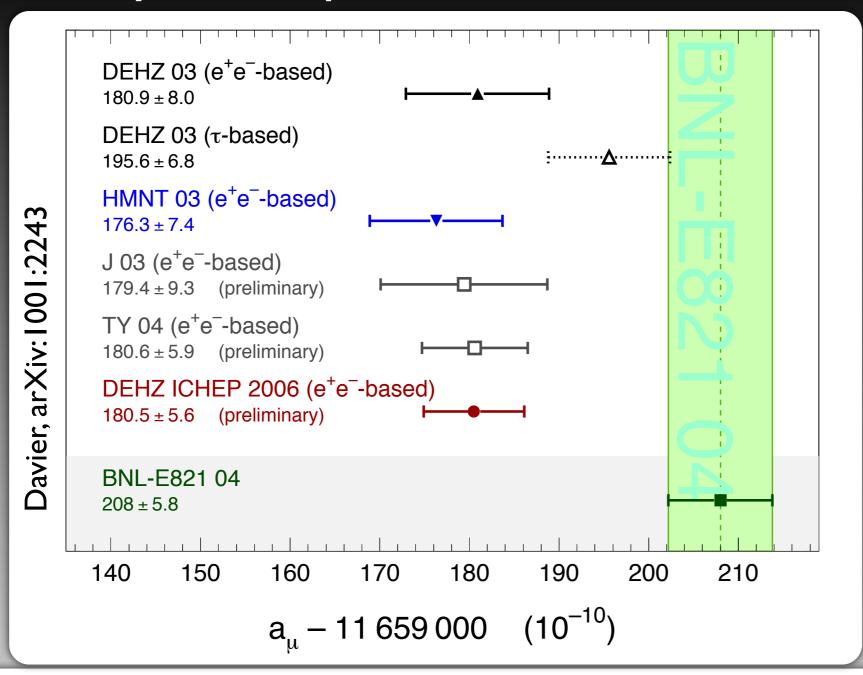
Hadronic vacuum polarization contribution to muon g-2 using staggered fermions

Christopher Aubin June 18, 2012 Project X

with Tom Blum, Maarten Golterman, & Santi Peris

"Theory" vs. Experiment



Deviation ~ 3-3.8 sigma

Fermilab experiment will start in 2016, to reduce error from 0.5 to 0.1 ppm

$$a_{\mu}^{\exp} = \left(\frac{g_{\mu} - 2}{2}\right)^{\exp} = 11659208(6) \times 10^{-10}$$

FORDHAM UNIVERSITY

THE JESUIT UNIVERSITY OF NEW YORK

Outline

Muon g-2 and current theory for HLO

HLO: $O(\alpha^2)$ Contribution—Vacuum Polarization

(g-2)^{LHO} from first principles: Lattice Gauge Theory

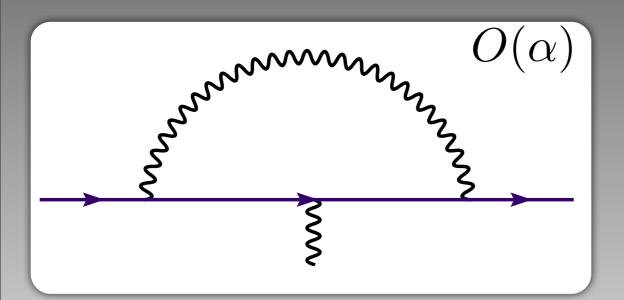
Lattice results for vacuum polarization

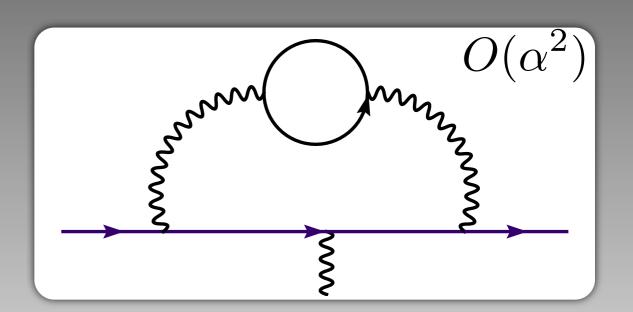
Preliminary fits for g-2 VMD vs. Padé Approximants

Muon g-2

$$\Gamma^{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}}{2m_{\mu}} F_2(q^2)$$

$$a_{\mu} = \left(\frac{g_{\mu} - 2}{2}\right) = F_2(q^2 = 0)$$



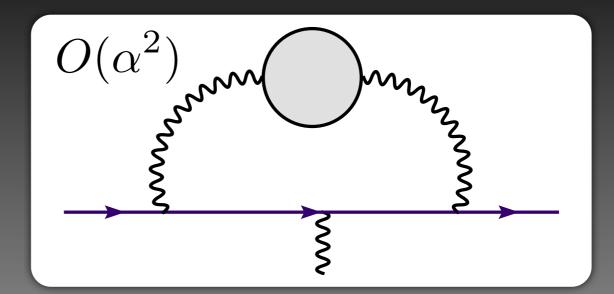


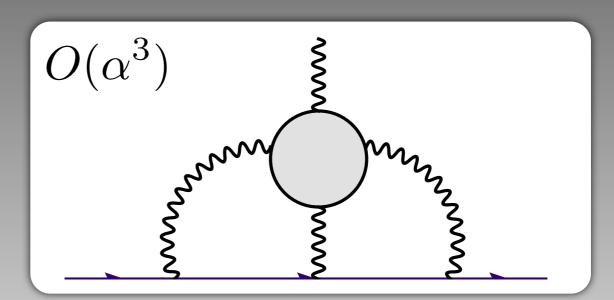
+ other non-QCD terms...

Hadronic contributions

Vacuum Polarization

Light by light





I'll focus on the *leading* hadronic contribution, the vacuum polarization

Leading Hadronic Contribution

The $O(\alpha^2)$ hadronic contribution, $a_{\mu}^{\rm HLO}$, cannot be calculated in perturbation theory.

Via the Optical theorem, one can evaluate it using $\sigma(e^+e^- \to \text{hadrons})$.

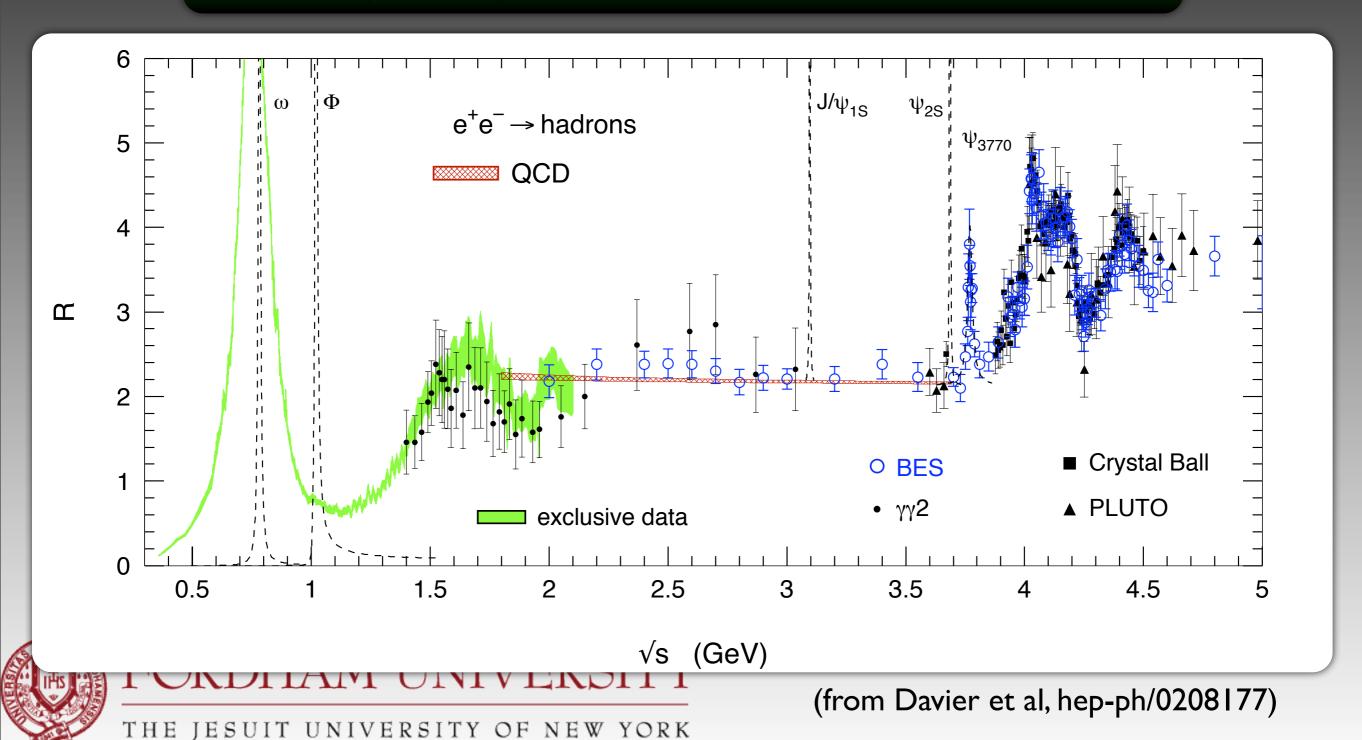
$$a_{\mu}^{\text{HLO}} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} K(s) R(s)$$

The kernel, K(s), is known, and R(s) can be measured experimentally

Not a theoretical problem since 1961!

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The precision of the Standard Model prediction is limited by the experimental measurement of R(s).



Lattice QCD

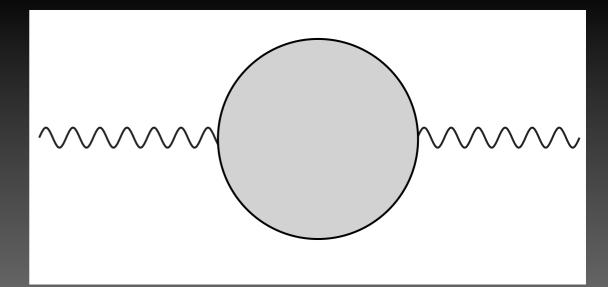
Use staggered quarks (MILC collaboration):

Large volumes
Small quark masses
High statistics

Asqtad staggered (reduced lattice spacing errors)
3 lattice spacings (that we use)
pion masses as low as 180 MeV

Future: HISQ quarks with nearly physical pion masses

Leading Hadronic Contribution



We can extract the $O(\alpha^2)$ hadronic contribution to a_μ from the vacuum polarization using the Euclidean space expression (Blum, 2003)

$$a_{\mu}^{(2)\mathrm{had,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dK^2 f(K^2) \left[\Pi(K^2) - \Pi(0)\right]$$

 $f(K^2)$ diverges as $K^2 \rightarrow 0 \Rightarrow$ dominated by low momentum region

⇒Need large lattices to simulate these low momenta accurately

FORDHAM UNIVERSITY

THE JESUIT UNIVERSITY OF NEW YORK

Lattice Calculation of $\Pi^{\mu\nu}(q)$

Calculate the vacuum polarization using the conserved current

$$\Pi^{\mu\nu}(q) = \int d^4x e^{iq \cdot (x-y)} \langle J^{\mu}(x) J^{\nu}(y) \rangle = (q^2 g^{\mu\nu} - q^{\mu} q^{\nu}) \Pi(q^2)$$

In the continuum we have the conserved (local) EM current:

$$J^{\mu}=\overline{\psi}\gamma^{\mu}\psi$$

While on the lattice it is a point-split current:

$$J_{\mu x} = \frac{1}{2} \left[\overline{\psi}_{x+a\hat{\mu}} U_{\mu x}^{\dagger} (1+\gamma_{\mu}) \psi_{x} - \overline{\psi}_{x} U_{\mu x} (1-\gamma_{\mu}) \psi_{x+a\hat{\mu}} \right]$$

Satisfies:

$$\left[\frac{1}{a} \sum_{\mu} \left[J_{\mu \ x} - J_{\mu \ x - a\hat{\mu}} \right] = 0 \right]$$

Lattice Calculation of $\Pi^{\mu\nu}(q)$

On the lattice this satisfies a discrete Ward Identity, so we modify the expressions above

$$Q_{\mu} \to \hat{Q}_{\mu} = \frac{2}{a} \sin\left(\frac{aQ_{\mu}}{2}\right)$$

The finite volume restricts the momenta:

$$Q_{\mu} = \frac{2\pi n_{\mu}}{aL_{\mu}}$$

SO

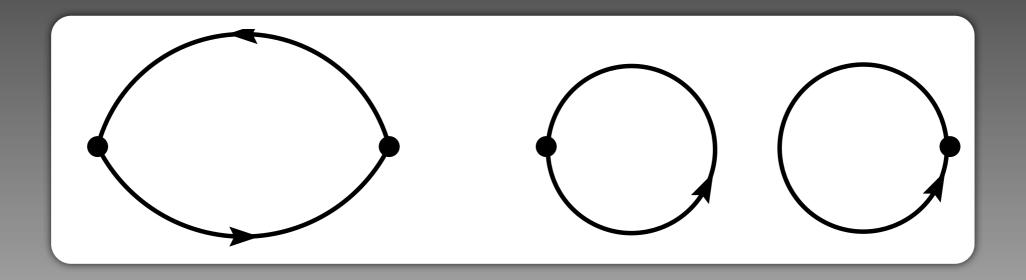
$$\Pi^{\mu\nu}(Q) = (\hat{Q}_{\mu}\hat{Q}_{\nu} - \hat{Q}^{2}\delta_{\mu\nu})\Pi(Q^{2})$$

This provides a strong check on the simulation!

Lattice Calculation of $\Pi^{\mu\nu}(q)$

To perform lattice calculation:

Wick contract the quark fields in the current, giving two types of contractions:



We neglect second contraction for now (suppressed, also very noisy)

Hard to fit low-momentum region — Also most important part

(No lattice talk is complete without a table of numbers in unphysical units only the speaker understands)

2+1-flavor MILC "Asqtad" staggered configurations

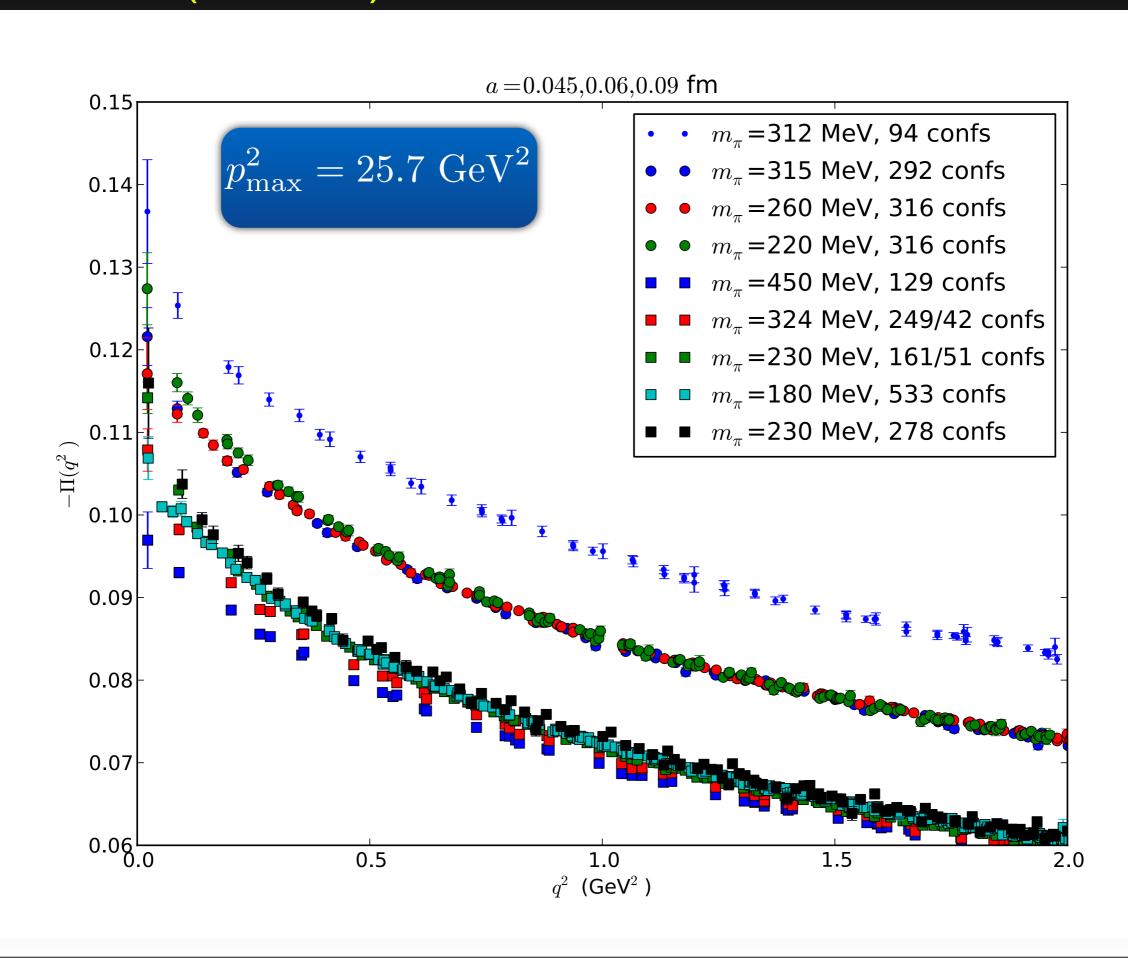
a (fm)	am_l	am_s	β	size	$m_{\pi}L$	# lats.
						avail.
$\approx 0.09*$	0.0124	0.031	7.11	$28^3 \times 96$	5.78	531
$\approx 0.09*$	0.0062	0.031	7.09	$28^3 \times 96$	4.14	591
≈ 0.09	0.00465	0.031	7.085	$32^3 \times 96$	4.10	480
$\approx 0.09*$	0.0031	0.031	7.08	$40^3 \times 96$	4.22	945
$\approx 0.09*$	0.00155	0.031	7.075	$64^3 \times 96$	4.80	491
pprox 0.09	0.0031	0.0031	7.045	$40^3 \times 96$	4.20	440
$\approx 0.06^{\dagger}$	0.0036	0.018	7.47	$48^{3} \times 144$	4.50	751
$\approx 0.06^{\dagger}$	0.0025	0.018	7.465	$56^3 \times 144$	4.38	768
$\approx 0.06*$	0.0018	0.018	7.46	$64^3 \times 144$	4.27	826
pprox 0.045	0.0028	0.014	7.81	$64^3 \times 192$	4.56	801

Now: 3 lattice spacings, and pion masses as low as ~180 MeV

THE JESUIT UNIVERSITI OF NEW TORK

All (new) simulations were performed using USQCD Lattice resources here at Fermilab (the Ds and J/Psi clusters)

All results (thus far)



Fitting

Can't calculate the vacuum polarization at $q^2=0$ directly

For high momentum, continuum PT works

For low momentum:

Simple polynomials?

No good beyond cubic/quartic order in q^2

Vector Meson Dominance/ChPT

Padé Approximants

Vector Meson Dominance

$$\Pi(Q^2) = \frac{A}{Q^2 + m_\rho^2} + B$$

A is related to rho decay constant – in principle could determine both this and the rho mass from simulations, thus only B is a free parameter

For small pion masses, the two-pion state is the lightest state in this channel – can't measure rho mass (yet)!

Rho decay

On our lightest fine (a=0.09 fm) lattice, the rho can "decay"

Here, the rho mass cannot be extracted very easily, since

$$am_{\rho}^{\rm phys} \approx 0.35 \ (\approx am_{\rho}^{\rm lat})$$

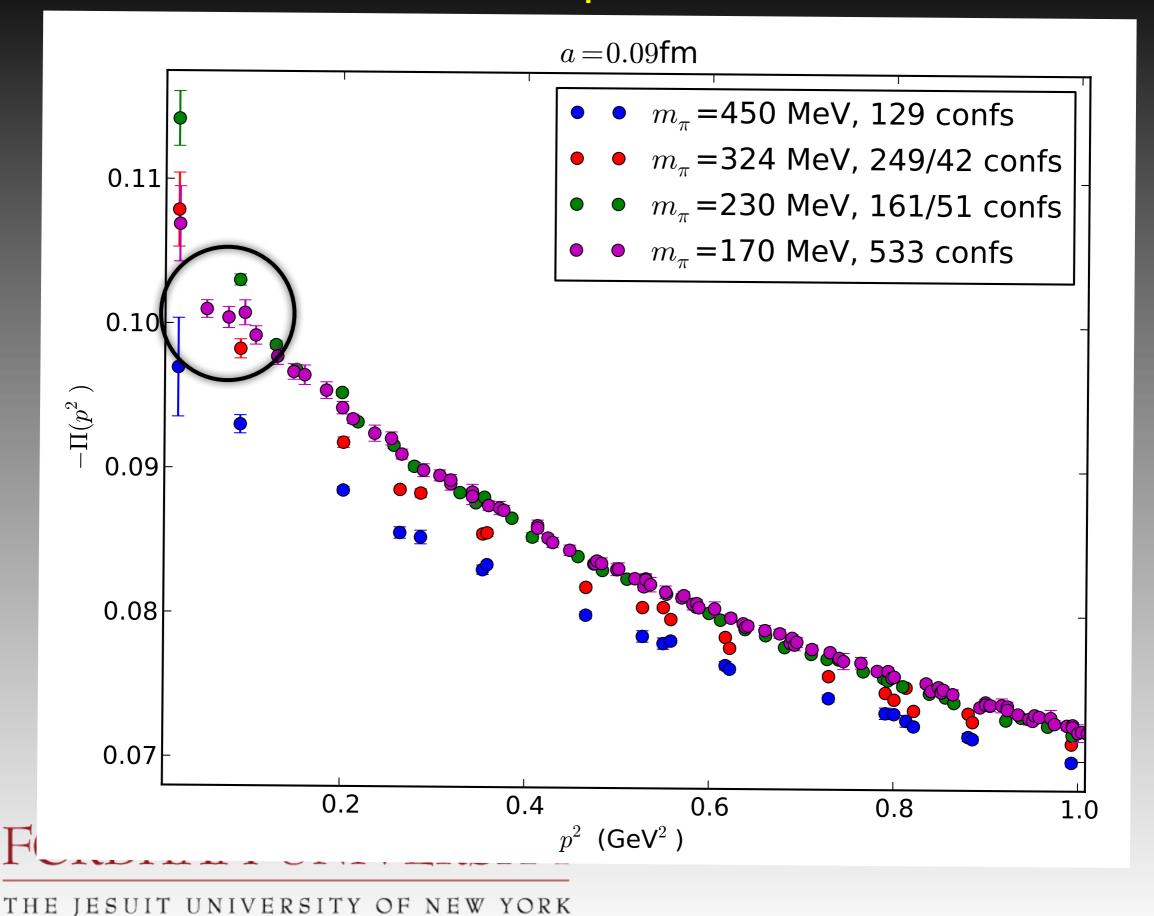
And the two smallest non-zero spatial momenta allowed are

$$ap = \frac{2\pi}{L}, \frac{2\sqrt{2}\pi}{L}$$

For a two pion state with rho quantum numbers:

$$aE_{2\pi} = 0.2374, 0.3081 < am_{\rho}$$

Can be seen to affect the vacuum polarization!



This must be understood theoretically, as it clearly effects the low-energy regime – cannot get a fully reliable result without it!

Also tricky to use rho mass as a fixed parameter in fits – without a complete study of mixing with 2-pion state

$$\begin{pmatrix} \langle \rho | \rho \rangle & \langle \rho | 2\pi \rangle \\ \langle 2\pi | \rho \rangle & \langle 2\pi | 2\pi \rangle \end{pmatrix}$$

Need a full finite-volume analysis to disentangle the rho and 2 pion states

$$\frac{\Pi(0) - \Pi(Q^2)}{Q^2} = \int_{4m_\pi^2}^{\infty} dt \frac{\rho(t)}{t(t+Q^2)} \equiv \Phi(Q^2)$$

is a Stieltjes function, analytic at all points not on the cut $(-\infty, -4m_\pi^2]$

Theorem:

Given P points $(Q_i^2, \Phi(Q_i^2))$, a sequence of Padé Approximants can be constructed which converge to $\Phi(Q^2)$ on any closed, bounded region of the complex plane excluding the cut, in the limit $P \to \infty$. (Baker 1969, Barnsley 1973)

Padé Approximants

This can be written as

$$\Pi(Q^2) = \Pi(0) - Q^2 \left(a_0 + \sum_{n=1}^{\lfloor r/2 \rfloor} \frac{a_n}{b_n + Q^2} \right)$$

$$a_{n>0} > 0, \ b_{\lfloor P/2 \rfloor} > \cdots b_1 > 4m_{\pi}^2$$

if P is even: $a_0 = 0$

For different values of P, we fit to different Padé's

Р	2	3	4	5
Padé	[0,1]	[1,1]	[1,2]	[2,2]

For comparison, we will cut off the integral for the g-2 at $(I \text{ GeV})^2$

Note that VMD is a [0,1] Padé, but with its pole fixed to be the vector mass, and as such is not a valid Padé for our purposes!

FORDHAM UNIVERSITY

THE JESUIT UNIVERSITY OF NEW YORK

Test on fine MILC lattices (pion mass = 480 MeV)

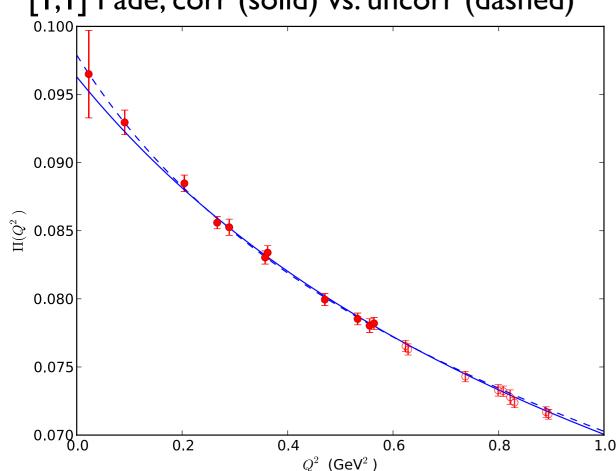
			correlated	uncorrelated		
		interval	$0 < Q^2 \le 0.6 \text{ GeV}^2$	$ interval 0 < Q^2 \le 1 \text{ GeV}^2 $		
PA	# parameters	χ^2/dof	$10^{10} a_{\mu}^{\mathrm{HLO},Q^2 \le 1}$	χ^2/dof	$10^{10} a_{\mu}^{\mathrm{HLO},Q^2 \le 1}$	
VMD	2	5.86/3*	363(7)	4.37/18	413(8)	
[0,1]	3	11.4/8	338(6)	3.58/17	373(37)	
[1,1]	4	7.49/7	350(8)	3.36/16	424(116)	
[1,2]	5	7.49/6	350(8)	3.35/15	443(293)	
[2,2]	6	7.49/5	350(7)	3.35/14	445(432)	

^{*} interval $0 < Q^2 \le 0.35~{\rm GeV^2}$

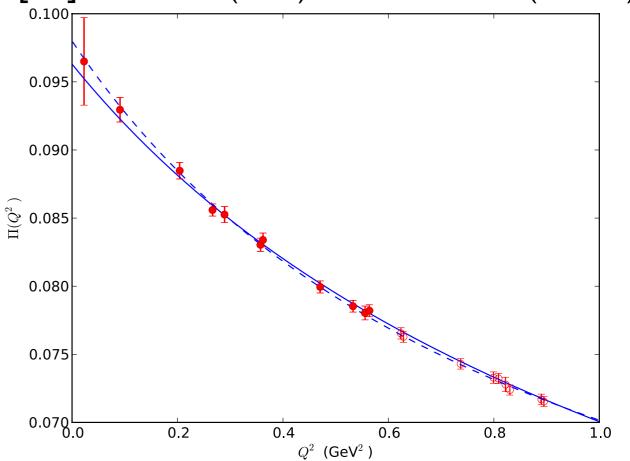
Correlated Padé's are stable – better with more parameters Higher poles ill-determined (does not affect g-2)

Consistent unless one compares uncorrelated VMD with the correlated fits

[1,1] Pade, corr (solid) vs. uncorr (dashed) 0.100



[1,1] Pade, corr (solid) vs.VMD uncorr (dashed)



Superfine results:

Correlated fits systematically low All fits have reasonable chi²

"By eye" – no way to choose one fit over another

a = 0.06 fm $m_{\pi} = 220 \text{ MeV}$

[1,1] Padé (corr):

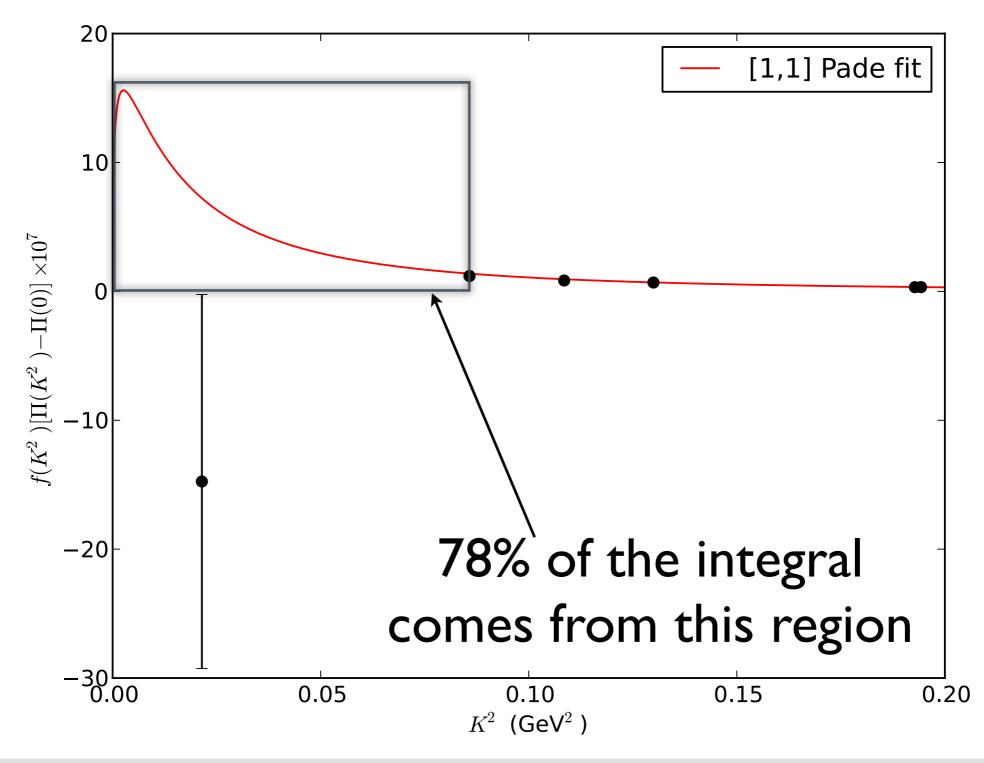
$$a_{\mu}^{\mathrm{HLO,Q^2 \le 1}} = 572(41) \times 10^{10}$$

VMD (uncorr):

$$a_{\mu}^{\text{HLO,Q}^2 \le 1} = 646(8) \times 10^{10}$$

THE JESUIT UNIVERSITY OF NEW YO

Difficulty



Note that fits can be misleading!

Unknown systematics are hidden in VMD fits

Any fits which use data primarily excluding low momentum region should be met with caution!

17% discrepancy between VMD & Padé fits

Primary Problems:

Low momentum (Large volumes/TBC's)

Statistics (AMA)

Disconnected contributions (definitely essential for ~5% unc)

Light quark masses (soon not a problem)

Chiral Extrapolation?

Soon to be irrelevant – HISQ ensembles with near-physical pion mass

Note that fits can be misleading!

Unknown systematics are hidden in VMD fits

Any fits which use data primarily excluding low momentum region should be met with caution!

17% discrepancy between VMD & Padé fits

Primary Problems:

Low momentum (Large volumes/TBC's)

Statistics (AMA)

Disconnected contributions (definitely essential for ~5% unc)

Light quark masses (soon not a problem

Non-trivial problem!

Chiral Extrapolation?

Soon to be irrelevant – HISQ ensembles with near-physical pion mass

Conclusions

Full results still yet to come, analysis complicated by light masses...

Immediate future:

Better statistics using all-mode averaging (in progress)

Thus improved fits (able to get higher Padé poles?)

Begin simulations on HISQ ensembles with nearly physical pion mass

Additionally:

Need to fill in low momentum region (twisted boundary conditions)

Longer term:

Include disconnected diagrams

Stay tuned!

